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Abstract 

Selective laser sintering (SLS) is an Additive Manufacturing (AM) process that yields excellent part 
qualities with good mechanical properties. The SLS process employs micron-sized polymer particles, which are 
selectively fused by a laser. While there seem to be hardly any boundaries regarding design, there are quite 
some restrictions concerning the variety of commercially available SLS materials. With a market share of 
roughly 90%, polyamide 12 (PA12) is currently the most widely used polymer material for SLS. Concerning 
particle or fiber enhanced materials, only dry blended, but hardly any composite materials are available. 
In this contribution, the manufacturing of nanoparticulate alumina-, titania- and silica-filled polyamide 11 
(PA11) particles is demonstrated. The particles are manufactured via liquid-liquid phase separation and 
precipitation (also known as solution-dissolution process) from ethanol dispersions. Bulk polymer material of 
PA11 is directly converted to composite microparticles in a one-pot approach. The produced particles are 
characterized regarding their size and morphology. The amount of nanoparticles in the bulk is assessed via 
thermogravimetric analysis (TGA). Furthermore, the effect of the nanoparticles as nucleating agents is 
investigated via DSC and correlated with surface energies as determined by inverse gas chromatography (IGC). 

Introduction 
The field of polymer-based Additive Manufacturing (AM) and its areas of application are constantly 

expanding. Technologies such as fused filament fabrication (FFF), stereolithography (SLA) or binder jetting 
enable 3D printing of a wide variety of components, whether flexible or rigid. However, if functional 
components with high strength and stability are required, typically powder-based AM technologies, above all 
laser powder bed fusion (aka selective laser sintering (SLS) are chosen. In this process, a homogeneous layer of 
powder is spread onto a building platform. The temperature in the manufacturing system is set between the 
onset of melting and the onset of crystallization of the respective polymer. This temperature range often is 
referred to as ‘sintering window’. The particles in the spread powder are selectively fused with a laser, 
according to the cross section of the part to be built in this layer, before the building platform is lowered by the 
height of one powder layer and the process is repeated. The SLS process offers a huge freedom of design, as no 
additional support structures are needed, due to the surrounding powder bed acting as support [1]. However, 
some limitations, especially concerning the functionality of the parts produced, stem from the limited choice of 
commercially available powder materials. With a market share of around 90%, polyamide 12 (PA12) is 
currently the most commonly used SLS powder material [2]. The reasons behind this lack of alternative 
materials are the demanding requirements needed for SLS processing. Applicable polymer powders must be 
optimized with regard to size, shape, flowability, packing properties, but also thermal and rheological 
properties. Thereby, new functionalities can either be introduced via development of novel powder materials 
based on polymers other than PA12, or by adding new functionalities to existing powder materials via fillers to 
obtain composites. Especially nanoparticles are known to add many new functionalities to plastics, from 
improvement of mechanical properties, to thermal o ctrical conductivity, optical properties or changes in 
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rheological behavior, to only name a few [3–6]. Adnan et al. [7] could show a correlation between smaller filler 
size and increased elastic properties in nanocomposite materials, especially with homogeneously distributed 
nanoparticles. There are many methods and processes to obtain composite powders [8], among them melt 
compounding and ball milling [9], spray drying [10], solvent evaporation and physical mixing [11].  

In this study, the precipitation, or solution-dissolution, process to manufacture composite powder 
materials is utilized. This process is used to manufacture the largest portion of commercial PA12 powders used 
in SLS [12,13]. It is based on the dissolution of the polymer in a so-called moderate solvent at elevated 
temperatures and subsequent cooling of the solution. During cooling, the system reaches a miscibility gap, 
where, dependent on the system composition and process parameters, thermally-induced liquid-liquid phase 
separation (TIPS) sets in. During TIPS, polymer-rich droplets form in a polymer-lean continuous solvent phase. 
Subsequently, the polymer in the droplets solidifies or crystalizes and polymer microparticles are obtained. The 
final size distribution and shape depend, among others, on the solvent-polymer system, the initial polymer 
concentration, droplet coalescence and Ostwald ripening, stirring conditions etc. More information on this 
process can be found in [14–19]. Concerning additive manufacturing with PA11-nanocomposites, Chung and 
Das [22] investigated the manufacturing of functionally graded PA11-silica nanocomposite parts via SLS. They 
prepared the composite material with 2-10 vol.% silica by blending a PA11 powder with the silica in a rotary 
tumbler. They reported a complex interplay between nanosilica volume fraction and tensile modulus, as the 
modulus decrease up to 4 vol.% silica, whereas from there the modulus increases again for up to 10 vol.% of 
silica, where the modulus reached its maximum value. Analogous behavior was also observed for the 
compressive modulus. The manufacturing of a PA11-alumina nanocomposite was reported by Warnakula and 
Singamneni [23], with the aim to employ the alumina as heat storage, as the alumina absorbs 96 % of the CO2-
laser wavelength and subsequently dissipates the energy slowly as heat in order to improve the sintering. They 
prepared composites with 1 wt.% to 10 wt.% alumina by physical mixing and manufactured thin layers via SLS, 
but did also observe a narrowing of the sintering window. The addition of titania during the solution-dissolution 
process for the manufacturing of SLS powders is patented by Evonik, where they claim an improved surface 
quality due to an increased yellowing resistance when exposed to thermal stress during SLS [24]. Furthermore, 
also improved mechanical properties, especially modulus of elasticity, are claimed. In a recent publication, we 
investigated the solution-dissolution process for the manufacturing of PA11 particles and performed a thorough 
particle and material characterization before applying the material in the SLS process [25]. As an extension of 
this work, in this study we investigate the manufacturing of nanoparticle-filled PA11 particles with tailored 
filler content and characterize them regarding their SLS processability. In addition to particle size and shape, the 
filler content is assessed via thermogravimetric analysis (TGA), while analysis of the incorporation of the fillers 
into the PA11 particles is performed via microscopy on epoxy-embedded and polished samples. Furthermore, 
the influence of the nanoparticles on the sintering window and their effect as nucleating agents is investigated 
via DSC and possible correlations with surface energies as determined by inverse gas chromatography (IGC) 
are studied. The investigated filler nanoparticles, namely silica, alumina and titania, are chosen as model 
systems, as silica could provide creep resistance and impact strength, titania UV-resistance and aging protection 
and alumina enhanced mechanical strength and increased laser absorption [8]. 

Materials 

Polyamide 11 granules (Rilsan BMN O natural, Arkema) were used as feed material. Ethanol (99.5 %, 
denatured with 1 % MEK, VWR) was used as a moderate solvent without further purification. The 
nanoparticles used for filling the PA11 were pyrogenic silica (Aeroxide OX 50, Evonik), pyrogenic alumina 
(Aeroxide Alu C, Evonik) and pyrogenic titania (Aeroxide TiO2 T 805, Evonik). 
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Methods 

Precipitation of filled PA11 particles 

DAB-3 (Berghof) steel autoclaves equipped with PTFE liners placed on stirrer hotplates were used as 
reactors for particle manufacturing. A detailed description of the particle precipitation procedure can be found 
in [25]. In all reported experiments 20 g PA11 granules and 80 g ethanol were used. The added nanoparticle 
concentrations are given as weight fraction with respect to the polymer mass. To ensure proper dispersion of the 
nanoparticles in the solvent, the appropriate amount of nanoparticles was mixed with ethanol and dispersed for 
15 min using a rotor-stator mixer (Ultra Turrax T18, IKA). The autoclaves were then heated to 190 °C, where 
the system was held for 15 min, to ensure complete dissolution of the PA11, before heating was turned off. The 
system was then cooled to 130 °C where an isothermal step was applied for 30 min. Stirring inside the 
autoclaves was realized via magnetic stirring bars (6mm x 25 mm) and varied between 100 and 600 rpm for the 
silica and alumina systems. For the titania systems, the dispersion was not stable when stirred with 100 rpm, 
therefore stirring was varied between 300 and 1200 rpm. The autoclaves were opened at temperatures below 
60°C and the product particles were collected by filtration via a Büchner funnel (Grade 1 filter, Whatman). The 
recovered wet particles were subsequently dried in an oven. 

Laser diffraction particle sizing 

Particle size distribution (PSDs) of the nanoparticle-filled PA11 was measured by laser diffraction using 
a Mastersizer 2000 equipped with a Scirocco 2000 dry dispersion unit (Malvern). The dispersion gas pressure 
was 2 bar. 

Scanning Electron Microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) 

Shape and surface morphology of the PA11 particles were characterized by scanning electron 
microscopy (SEM) with a GeminiSEM 500 (Carl Zeiss) operated at an acceleration voltage of 1.0 kV. A 
secondary electron detector was used for imaging. Elemental analysis of the nanofillers was conducted by 
energy dispersive X-ray spectroscopy (EDX) (X-Max, 80 mm², Oxford Instruments). 

Differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC) for the nanoparticle-filled PA11 powders was performed using 
a DSC8000 (PerkinElmer). The samples were placed in standard aluminum pans with covers and measured at a 
heating rate of 10 K/min from 30°C to 210°C followed by cooling to 30°C at 10 K/min. Measurements were 
conducted under continuous nitrogen purge gas flow (25 mL/min). 

Thermogravimetric analysis (TGA) 

Determination of the integral nanoparticle content in the filled PA11 powders was realized by assessing 
the weight of the ash residue via TGA. Experiments were performed in synthetic air using a TGAQ50 (TA 
Instruments). A ceramic pan with a volume of 250 μl was used and the sample weight was approximately 30-50 
mg. Measurements were conducted in a temperature range of 30–900 °C with a heating rate of 10 K/min. 

Particle cross-section inspection 

In order to analyze the filler distribution and the location of the fillers within the polymer particles, 
polished cross-sections of the particles are evaluated by electron microscopy. The powder particles are 
embedded in epoxy, before the samples are grinded and polished. Thereby, the inner volume of the particles is 
accessible, which allows for investigation of filler presence in the particle volume. The polished sections are 
then analyzed via SEM (Ultra Plus, Carl Zeiss) at 10 kV for high resolution imaging of the nano-fillers. Via an 
energy dispersive X-ray (EDX)-elemental analysis, the chemical identity of the nano-fillers can be assessed. 
Inverse gas chromatography (IGC) 
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The measurements of inverse gas chromatography (IGC) were conducted using a Surface Energy 
Analyzer (Surface Measurement Systems). Each sample was filled into a 6 mm x 30 mm (inner diameter 3 mm) 
sample column with sample weights between 13 and 68 mg, providing about 1 m² of sample surface area. After 
conditioning the samples at 80 °C for two hours, surface energies were measured at 50 °C. Heptane, octane and 
nonane were used to determine the dispersive surface energies, while toluene and dichloromethane were used 
for the acid-base properties. 

Results 

To study the influence of the type and concentration of the added nanoparticles present in the moderate 
solvent during precipitation, experiments with varying concentrations of added nanoparticles were conducted. 
For titania and silica, precipitation experiments up to 30 wt.% of filler could be performed. For alumina, it was 
not possible to disperse more than 10 wt.% (  2 g) in 80 g of ethanol, due to the low dispersion stability. The 
particle size distributions of alumina-filled, silica-filled and titania-filled PA11 particles are depicted in Figure 
1. Compared to the sample without any fillers, the added nanoparticles neither strongly increase, nor decrease
the particle size of the product. For the 30 wt.% silica sample however, a pronounced sub 10 μm fine fraction
could be observed. While all samples show some fine and coarse fraction outside the specification of typical
SLS powders, their use in SLS could be easily provided by appropriate classification (e.g. sieving).
Furthermore, no general trend correlating particle size with increasing nanoparticle concentration could be
observed. A more pronounced effect on the particle size can be expected for process parameters besides system
composition, e.g. stirrer speed [25], which will not be addressed here.

Figure 1: Particle size distribution (volume sum, Q3) of nanoparticle-filled PA11 particles. Left: Alumina-filled 
PA11 particles. Middle: Silica-filled PA11 particles. Right: Titania-filled PA11 particles 

The effect of the added nanoparticles on the particle shape and morphology can be assessed using SEM 
imaging. In Figure 2, images of the nanoparticle-filled PA11 particles are depicted. The particle shape in all 
samples is typical for precipitated PA11 (c.f. [25]), while the surface morphology differs. Due to the different 
density of the nanoparticles, namely 3.27 g/cm³, 2.2 g/cm³ and 3.5 g/cm³ for alumina, silica and titania 
respectively, the volume weighted degree of filling varies. This is immanent, when the 30 wt.% samples of 
silica and titania are compared. The shape and sur morphology of the 30 wt.% titania sample, which 
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corresponds to around 8.9 vol.%, and the 10 wt.% alumina sample, with 3.2 vol.% alumina, is typical for 
precipitated PA11. The 30 wt.% silica sample however, with around 14.2 vol.% silica, appears very smooth and 
completely covered in a nanoparticle shell. With such high degrees of filling, sintering of the particles in the 
SLS process might be hindered, as the nanoparticles could contribute to a Pickering stabilization at the 
boundary layer of the molten particles [26] and, thus, inhibit melt coalescence. Regarding SLS processability, 
nanoparticles could also affect the recrystallization of the polymer after exposure to the laser, as the particles 
could act as nuclei for heterogeneous nucleation. These effects will be addressed via DSC. 

Figure 2: SEM images of nanoparticle-filled PA11 particles. 

In order to check, if the desired amount of nanoparticles is incorporated into the particles during the 
precipitation process, TGA measurements were performed. The quantified ash residue can be correlated to the 
amount of nanoparticles in the powder sample. Due to post processing, namely washing with ethanol and 
suction filtering, of the obtained powders after the precipitation process, the occurrence of free nanoparticles in 
the investigated powders, which are neither enclosed in the polymer particle matrix, nor adhered to the polymer 
particle surface, is rather unlikely. Since all investigated nanoparticles are oxides, no significant weight change 
by oxidation or any other change of chemical constitution of the filler during measurement in synthetic air 
(80 % N2/20 % O2) is expected. The quantified ash residue for the nanoparticle-filled powders manufactured 
under variation of the stirring conditions during precipitation and the added amount of nanoparticles is depicted 
in Figure 3. 

The desired amount of nanofillers, as initially added to the precipitation process, can be found with very 
good agreement in the powder bulk. Independent of the stirring conditions during precipitation, the desired 
amount of filler is present in the powder material for all investigated samples. Only for alumina, a slightly 
higher amount than expected is found in the samples. Since this happens in all samples, a systematic error, e.g. 
by oxidation, and thereby weight increase, of unreacted species in the pyrogenic alumina or the transition from 
the oxide to the thermodynamically favored hydroxide is probable. While the TGA measurements show nicely, 
that it is possible to precisely tailor the amount of nanofillers in the powder with our precipitation approach, no 
information on the location of the fillers in the powder can be given. It can be assumed that the fillers are 
incorporated into the particle matrix, since especially for the high filler concentrations, coverage of the polymer 
particle surface only is unlikely. Furthermore, the presence of free nanoparticles is improbable, as extensive 
washing and suction filtering of the obtained powder is performed after the initial precipitation experiment. 
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Figure 3: Quantified ash residue for alumina-filled (left), silica-filled (middle) and titania-filled (right) PA11 
particles manufactured under variation of stirring conditions. 

As an approach to gain information on the distribution of the nanofillers in the particles, polished cross-
sections of epoxy-embedded particles were investigated via SEM and EDX analyses, which allows to assess the 
local chemical identity and spatial distribution of the filler within the polymer matrix. SEM images of the cross-
sections are given in Figure 4. 

Figure 4: From left to right: Images of cross sections of 10 wt.% alumina-filled, 30 wt.% silica-filled and 30 
wt.% titania-filled PA11 particles embedded in resin. 

For alumina-filled PA11, an even distribution of smaller and larger nanoparticle agglomerates can be 
well observed in the polymer particle matrix. The EDX analysis shows a signal at 1.487 keV, which can be 
attributed to aluminum. In the case of titania, the nanoparticles are visible in the polymer particle matrix for the 
30 wt.% sample. Also here, smaller and larger titania agglomerates are distributed in the polymer, which give 
the unique Ti signal at 4.508 keV. The 30 wt.% silica sample shows a different behavior: While there are also 
silica particles present in the particle matrix, compared to the other samples, more silica nanoparticles, with a 
signal at 1.740 keV, can be found at the polymer particle surface. This silica shell can be seen in Figure 4 for 
the silica sample as a bright outline of the slightly darker particle matrix. This corresponds well to the 
observations made via SEM imaging of the 30 wt.% silica-filled PA11 composite powder, where a shell-like 
silica layer on the particle surface could be observed. It should be mentioned, that naturally only larger 
nanoparticle agglomerates can be readily observed in the SEM with the employed imaging settings. However, 
in all samples, the incorporation of nanoparticles into the polymer particle matrix could be shown. Such 
observations hint at the interaction and adhesion of the nanofillers with the polymer matrix. However, as 
mechanical properties of laser sintered nanocomposites are, in addition to filler concentration, governed by the 
distribution and bonding of the fillers in and on the polymer, thorough specimen characterization must be 
subject of future studies. 

To determine the effect of the filler nanoparticles on the thermal properties (e.g. the ‘sintering window’), 
DSC experiments were conducted. The thermograms for the alumina-, silica- and titania-filled PA11 are 
depicted in Figure 5. A detailed discussion on the thermograms and the occurring double -phase melt 
endotherm for the first heating of precipitated PA11 can be found in [25]. Interestingly, silica does hardly 
influence the crystallization of PA11, as no shift in the crystallization peak is observable, even though silica 
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provides the highest volume concentration of the investigated nanoparticles. The added silica nanoparticles do 
not act as nucleating agents, thus no premature crystallization is induced. This observation supports the 
widespread use of pyrogenic silica as flowability enhancers for SLS powders, as no negative impact on the 
sintering window is to be expected, especially given the typically low concentrations (0.1 wt.% - 0.5 wt.%) used 
[27–29]. Furthermore, no significant decrease or increase of the crystallinity (as determined from the melting
peak using a melt enthalpy of a perfect PA11 crystal of 189.05 J/g [30]) could be observed. While the 
precipitated native PA11 powder shows a crystallinity of 63 %, all silica-filled samples are in a range of ± 5 %, 
when corrected for the added silica mass fraction. Contrary to Chunze et al. [21], the employed silica in this 
study does not lead to a narrowing of the sintering window, which is beneficial for SLS processing. 

However, titania with the lowest volume concentration, shows a drastic increase of the crystallization 
onset from 169.7 °C for native PA11 to 170.9 °C, 174.1 °C, 175.8 °C, 177.2 °C and 179.4 °C for titania 
concentrations of 0.1 wt.%, 1 wt.%, 5 wt.%, 10 wt.% and 30 wt.%, respectively. Addition of only 0.1 wt.% 
titania already results in a shift of the crystallization onset of around 1 °C , while 30 wt.% lead to a shift of 10 
K. Based on this observation, addition of titania of this grade as a whitening agent for SLS materials should be
considered carefully, as a strong decrease of the thermal sintering window is to be expected.
Addition of alumina leads also to an increase of the crystallization onset, however, not as pronounced as titania.
The crystallization onset is shifted from 169.7 °C for native PA11 powder to 171.1 °C, 170.7 °C, 173.5 °C and
173.6 °C for alumina concentrations of 1 wt.%, 4 wt.%, 8 wt.% and 10 wt.%, respectively. Such a behavior has
been reported previously for PA11-alumina nanocomposites [23]. Compared to titania, the addition of 10 wt.%
of alumina leads only to an increase of the crystallization onset of around 4 K instead of 8.5 K.

Figure 5: First heating and cooling thermograms of nanoparticle-filled PA11 powders with varying 
concentrations of titania, alumina and silica, respectively.  

Since the observed effect of crystallization onset shift cannot be linked to sheer number or volume 
concentration of nanoparticles present in the PA11, IGC measurements of the native PA11 powder and the pure 
nanoparticles were performed. Via IGC, the surface energy of the powders is accessible and by comparing the 
energies, there might be some correlations between the effect or non-effect as nucleating agents of the 
investigated nanoparticles for PA11. IGC measurements have been shown to be viable to investigate adhesion 
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in polymer-fiber composites [31,32]. The determined components of polar and disperse surface energy are 
depicted in Figure 6 left and right, respectively. 

Figure 6: Plot of the polar (left) and disperse (right) components of the surface energies of PA11, titania, silica 
and alumina, as determined by IGC. 

The IGC measurements show, that the polar and disperse surface energy components of titania are lower 
than those of PA11. For alumina, both components show significantly higher surface energies than PA11, 
especially concerning disperse surface energies. While the polar surface energy component of silica is lower 
than PA11, the disperse component is nearly similar to that of PA11. While the small difference in the disperse 
surface energy between PA11 and silica might be linked to the weak nucleating effect observed via DSC, no 
such correlations can be drawn easily for the strong nucleating effect of titania and the minor effect of alumina. 
While alumina is the only investigated material with higher polar and disperse surface energy components and 
additionally shows the highest energy difference to PA11, its nucleating effect is significantly less pronounced 
than that of titania. Based on these observations, no direct correlation can be drawn from surface energy 
measurements and possible effects as nucleating agents in these investigated systems. However, when looking 
at Hamaker constants of the filler materials, which are represented in the disperse surface energy, a trend can be 
observed. Ackler et al. [33] give vacuum Hamaker constants for the ceramic filler materials determined by 
different measurement techniques. The mean values over the different techniques are 61.8 zJ ± 4 zJ, 
137.0 zJ ± 12.8 zJ and 300.8 zJ ± 115.5 zJ, for silica, alumina and titania, respectively, which follows the 
observed effectiveness as nucleating agent. However, the reason for our deviating results obtained from IGC 
might stem from the precursor-induced organic residues and surface groups present on pyrogenic oxide 
materials, which often determine the specific field of application of the nanoparticles [34]. As the measurements 
were conducted with pristine material at 50 °C, the effect of the solution-dissolution process on the surface 
groups remains unknown. Further investigations are needed to shed more light on the topic. 

Conclusion 

In this study, we could show the manufacturing of nanoparticle-filled PA11 powder materials with 
tailored filler concentration for application in laser sintering. Shape and size, especially after appropriate 
classification, of the manufactured particles are suitable for SLS processing. Via TGA, we could show that 
almost complete incorporation of the filler material added during the precipitation process is possible, thus 
enabling tailoring of the filler content. This is important, as previous studies showed that resulting properties of 
laser sintered specimen depend on filler concentration [22].  Furthermore, we could show, that the fillers are 
incorporated into the particle volume, thus our process yields true polymer-nanofiller composite particles, 
contrary to physical mixtures, where the nanoparticles remain on the polymer surface [23]. While the added 
nanoparticles did not remarkably influence particle size, a huge impact on the thermal sintering window and 
especially the crystallization was observable, thus directly influencing SLS processability. Interestingly, silica, 
which is often used as a flowability enhancer, did not act as a nucleating agent for PA11, even at concentrations 

 1038

~ 
E 35 ,--- .-------:p-:;ol-::ar:--------;::==== 

• PA11 
-, 30 
E ->a 25 
Cl ... 
Cl) 
C: 20 
Cl) 

Cl) 
(.) 15 

~ 

• 

• • • • • 

• • • 

• Ti02 

• Si02 

• A1p3 

• 
• • 

::::J 10 -· U) L ~~~=:::;9::=---~~-_J 
0.00 0.05 0.10 0.15 0.20 

Surface coverage n/n0 

N 
0E go ,--------d,,.-is-pe_ra_e----==.= P=A=1=1:::i 

■ 
-, 80 ■ Ti0 2 

E 
- 70 ■ Si02 

>a ■ ■ Al20 3 
~60 
Cl) 

~ 50 
Cl) 
U 40 
n, 
't: 30 

::::J 
U) 

■ 

■ 

20 -1---,--~----,-~----:;:...._~-.--~-,--~ 
0.00 0.05 0.10 0.15 0.20 

Surface coverage n/n0 



as high as 30 wt.%. The added titania led to a drastic increase of crystallization onset and, thereby, a narrowing 
of the sintering window. Therefore, the addition of titania as e.g. whitening agent should be considered 
carefully. Although the effects in DSC were well observable, no direct correlation between surface energy as 
obtained via IGC and nucleating effect could be drawn. For future investigations, powder processability must be 
addressed. Based on that, concentration-dependent part properties and maximum filling degrees, 
where sintering of the particles is still possible and, thus, stable parts are obtainable via SLS, shall be assessed.  
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